A Result on Fractional (a, b, k)-critical Covered Graphs

نویسندگان

چکیده

A fractional [a, b]-factor of a graph G is function h from E(G) to [0, 1] satisfying \(a \le d_G^h(v) b\) for every vertex v G, where \(d_G^h(v) = \sum\limits_{e \in E(v)} {h(e)} \) and E(v) {e uv : u ? V (G)}. called b]-covered if contains with h(e) 1 any edge e G. (a, b, k)-critical covered — Q ? V(G) ?Q? k. In this article, we demonstrate neighborhood condition be covered. Furthermore, claim that the result sharp.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A result on fractional ID-[a, b]-factor-critical graphs

A graphG is fractional ID-[a, b]-factor-critical ifG−I includes a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved that if α(G) ≤ 4b(δ(G)−a+1) (a+1)2+4b , then G is fractional ID-[a, b]-factor-critical. Furthermore, it is shown that the result is best possible in some sense.

متن کامل

Notes on Fractional k-Covered Graphs

A graph G is fractional k-covered if for each edge e of G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2, then a fractional k-covered graph is called a fractional 2-covered graph. The binding number bind(G) is defined as follows, bind(G) = min{ |NG(X)| |X| : Ø = X ⊆ V (G), NG(X) = V (G)}. In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4 and bind(G) > 5...

متن کامل

Some Results on Fractional Covered Graphs∗

Let G = (V (G),E(G)) be a graph. and let g, f be two integer-valued functions defined on V (G) such that g(x)≤ f (x) for all x ∈V (G). G is called fractional (g, f )-covered if each edge e of G belongs to a fractional (g, f )-factor Gh such that h(e) = 1, where h is the indicator function of Gh. In this paper, sufficient conditions related to toughness and isolated toughness for a graph to be f...

متن کامل

a neighborhood :union: condition for fractional $(k,n',m)$-critical deleted graphs

a graph $g$ is called a fractional‎ ‎$(k,n',m)$-critical deleted graph if any $n'$ vertices are removed‎ ‎from $g$ the resulting graph is a fractional $(k,m)$-deleted‎ ‎graph‎. ‎in this paper‎, ‎we prove that for integers $kge 2$‎, ‎$n',mge0$‎, ‎$nge8k+n'+4m-7$‎, ‎and $delta(g)ge k+n'+m$‎, ‎if‎ ‎$$|n_{g}(x)cup n_{g}(y)|gefrac{n+n'}{2}$$‎ ‎for each pair of non-adjac...

متن کامل

Degree Conditions of Fractional ID-k-Factor-Critical Graphs

We say that a simple graph G is fractional independent-set-deletable k-factor-critical, shortly, fractional ID-k-factor-critical, if G− I has a fractional k-factor for every independent set I of G. Some sufficient conditions for a graph to be fractional ID-k-factor-critical are studied in this paper. Furthermore, we show that the result is best possible in some sense. 2010 Mathematics Subject C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematicae Applicatae Sinica

سال: 2021

ISSN: ['0168-9673', '1618-3932']

DOI: https://doi.org/10.1007/s10255-021-1034-8